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Abstract

The aim of this study is to conduct experimental characterization and to develop a micro-mechanical model for thermoplastic elastomers
made of polypropylene and particles of rubber waste. Observations by means of Scanning Electron Microscope showed that the elastomer par-
ticles have an average dimension of 250 mm and are embedded in a polypropylene matrix. The mechanical behaviour is studied through a series
of tensile tests composed of loadings at different strain rates and relaxation steps. The constitutive equations were established within a self-
consistent scheme including the mechanical behaviour of the two phases. The matrix is modelled as an elastoviscoplastic solid and the rubber as
an elastic solid. Material coefficients have been determined using an inverse method. This paper presents a first version of the micro-mechanical
model and a comparison with experimental results.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A large quantity of rubber products, such as tyres, hoses
and belts are consumed in Europe every year. Since they con-
sist of irreversible cross-linked elastomers they cannot be re-
moulded as thermoplastics. Thus other ways of recycling of
post-consumer elastomer products have to be applied. One
possibility is to grind the rubber by several established milling
procedures to obtain fine rubber particles [1] which can be used
as functional fillers in polymeric matrices, for example poly-
propylene (PP) or polyethylene (PE) to obtain a thermoplastic
elastomer (TPE). However, to achieve a good mechanical
performance and TPE-like properties of the compounds a suf-
ficient phase interaction at the interface between rubber inclu-
sions and matrix is a necessity. This can be induced by radical
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reaction in the melt-mixing process [2]. TPEs based on rubber
waste were developed in the 1990s and previous studies have
shown that their mechanical properties are comparable to that
of commercially available TPEs [3,4]. However, to make the
material valuable for industrial applications, these mechanical
properties must be described by models which in turn can be
used by designers to predict the in-use behaviour.

The semi-crystalline thermoplastic matrix, itself, can be
considered a complex material; therefore, several studies have
developed models which take into account both a crystalline
phase and an amorphous phase. For example, Van Dommelen
et al. [5] proposed a multiscale numerical model to establish
links between microscopic, mesoscopic, and macroscopic
levels. While Bédoui et al. [6,7] developed two different
models for the Young’s modulus of semi-crystalline polymers.
One was a differential scheme in which ellipsoidal crystallites
were randomly dispersed in an amorphous matrix while the
other was a self-consistent scheme in which the material was
considered as an aggregate of randomly oriented two-layered
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phase composite inclusions (crystallineeamorphous). For
small deformations of semi-crystalline polymers, Nikolov et al.
[8,9] presented a multiscale constitutive model in which mi-
cro-mechanically based constitutive equations were developed
for each phase. They used a viscoplastic model for the crystal-
line lamellae and a new non-linear viscoelastic model for
the amorphous phase behaviour. Moreover, Ahzi et al. [10]
proposed a constitutive elastoviscoplastic model for the finite
deformation stressestrain behaviour of poly(ethylene tere-
phthalate) in which the crystallization rate evolves with the
strain rate and the temperature. Similarly, they also put for-
ward a two-phase self-consistent model for large deformation
stressestrain behaviour and strain induced crystallization in
polymers at temperatures above the glass transition tempera-
ture [11]. Crystallization under elongation has been measured
in situ and seems to be a major factor in thermoplastic
mechanical behaviour [12]. However, as a starting point, PP
matrix will be considered as one mechanical phase in the
present study.

Even though TPE structure complexity induces complex
material processing and complex mechanical behaviour,
models can be phenomenological and generally made of an
assembly of simple mechanical elements such as springs and
dash-pots [13]. For example, Veenstra et al. [14] developed a
model for a polymer blend in which the co-continuous mor-
phology was rendered by three orthogonal bars of a component
embedded in a unit cube, the remaining volume of which was
occupied by another component. Furthermore, this model was
successfully used by Sengers et al. [15] to model TPE behav-
iour in dynamic solicitations.

Another way to build a model is to take into account the
behaviour of each constituent, e.g. within a self-consistent
scheme. For linear elasticity, Eshelby [16] established an ana-
lytical model. Indeed, several authors have proposed a lineari-
zation of the material behaviour by different techniques. A
model for elastoviscoplastic material was established by
Masson and Zaoui [17] who linearized the problem which
was then solved by using a Laplace transform technique.
Also, Molinari et al. [18] proposed an interaction law for iso-
tropic behaviour and its validation [19]. The self-consistent
method has often been used for metallic materials [20] but
rarely for polymeric materials [21].

The number of phases in the model is linked to the level of
complexity of the material and of the model. Chabert et al.
[21] presented a homogenization method based on generalized
self-consistent schemes to model polymer-based nanocompo-
site behaviour using different structure patterns. For a silica
filled SBR, Mélé et al. [22] defined three phases: silica
particles, bound rubber (the rubber close to the particle), and
unbound rubber. The choice of the representative morpholog-
ical pattern depends on the particle content. Their self-
consistent model made with the viscoelastic properties of the
different phases forwards the better understanding of the
viscoelastic behaviour of the material. The Finite Element
Method (FEM) is sometimes used to calculate stresses and
strains in the Representative Volume Element (RVE) contain-
ing one [23] or several inclusions with different sizes in
random positions for soft inclusions [24] or rigid particles
for a nanocomposite [25]. FEM could also be used to validate
a self-consistent model [19]. In a composite like TPE,
soft particles are greatly stretched at very large deformation
and Asami and Nitta [26] have studied these particle deforma-
tions under large strains using Scanning and Transmission
Electron Microscopes, as well as Finite Element Method
simulation.

In this study, a self-consistent scheme is used to create a
model for the description of the mechanical behaviour of ther-
moplastic elastomers consisting of a polypropylene matrix with
dispersed elastomer inclusions, i.e. forming an island-matrix
structure. Indeed, the ability to understand and describe the
material behaviour provides the possibility to model the ser-
vice behaviour of products or parts made of these materials
such as car bumpers [27] or rubber boots [28]. And also
to model the material behaviour during some processing oper-
ations, as for instance stamping [29] or forming of solid poly-
mers [30]. As a first step, quasi-static tests within a moderate
strain range and relaxation tests were chosen, as a car bumper
loading. A new model is proposed with a suitable scale transi-
tion rule from the macroscopic level to the phase level. First of
all, the material and the experimental tests are presented.
Then, the micro-mechanical model is detailed, as well as the
constitutive law of the PP and the rubber. Model parameters
are then identified by inverse method. Finally, the model
results are compared to the experimental results.

2. Materials and experimental results

2.1. Materials

A commercial unfilled polypropylene (Basell, Moplen
RP220M) was used as the matrix, and the elastomer particles
of an average size of 250 mm originate from ground tread
layers of truck tyres. To establish a good interaction between
the two phases, a reactive melt-mixing process with the use
of radical donators in the form of organic peroxides and, if
required, radical acceptors as coagents, was developed [2,4].
This process was performed in an internal mixer. Electrical
power consumption was recorded to control the blending pro-
cess state. The PP matrix and elastomer powder were fed into
the mixer, and once a homogeneous compound was obtained,
the additives were added. To develop the model, three mate-
rials were studied: isotactic polypropylene (PP) and two TPEs
(TPE45 and TPE65) with a rubber volume fraction of 0.45 and
0.65, respectively (containing 50 wt% and 70 wt% of rubber
particles, respectively). Tensile test specimens with a cross-
section area of (4� 10) mm2 were injection moulded. The
micrographs in Fig. 1 show the phase morphology of the TPEs
obtained with a Scanning Electron Microscope (SEM).

2.2. Tests

An Instron 5567 testing machine was used at room temper-
ature for tensile tests. Strains were measured with an axial
extensiometer, and mechanical behaviour was studied during
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Fig. 1. Morphology of TPE45 (a) and TPE65 (b) observed by SEM. Elastomer particles appear pale grey and the matrix PP is dark. The black voids in (b) result

from the sample preparation procedure.
loadingerelaxation tests. Both axial strain and load were re-
corded during the test. By assuming an isochoric deformation
[31] Cauchy stress was calculated, as well as logarithmic axial
strain. An elastoviscoplastic model was chosen for the PP and
a specific strain history with loading phases at different strain
rates (10�4 s�1, 10�3 s�1, 10�2 s�1) and relaxation phases
(300 s) were tested to thoroughly identify the model. TPEs
were tested with a loading phase at 5� 10�3 s�1 followed
by a relaxation phase for 900 s. Fig. 2 gives the loading paths
for the PP and the TPE.

3. Micro-mechanical modelling

3.1. Introduction

The first step is to determine the pertinent scale to describe
the material structure. It mainly depends on the size of the big-
gest heterogeneities present in the material. An intermediate
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Fig. 2. Strain loading history for the PP and the TPEs. The strain rate and the

relaxation duration are given for each step.
scale between the atomic scale and the scale of the considered
structure must be chosen, and a Representative Volume
Element (RVE) has to be defined. It must be larger than the
biggest heterogeneities, yet small enough to respect the contin-
uum mechanics hypothesis; a necessary condition to be able to
consider that the RVE is representative would be that the
average stress hsi and the average strain h3i over the RVE
are equal, respectively, to the macroscopic stress S and to
the macroscopic strain E as:

S¼ hsi ¼ f0s0þ f1s1 ð1Þ

E¼ h3i ¼ f030þ f131 ð2Þ

where fk, sk and 3k are the volume fraction, the stress and strain
tensors, respectively, of phase k, while subscript indexes 0 and
1 represent the matrix and the filler, respectively. The brackets
hi denote volume averages over all the volume. In this case,
global RVE behaviour is assumed to be the same as that of
a Homogeneous Equivalent Medium (HEM), similar to the
heterogeneous material. Shapes, volume fractions, orientations
of different phases have to be described, as well as their me-
chanical behaviours [21]. This description is generally simpli-
fied and incomplete; therefore, the model gives only an
estimate of the real behaviour. The next step is then the local-
ization step in which relations between global quantities and
local quantities at position x have to be determined.

When the material is only understood by the phase volume
fractions without any information on the morphology, Voigt
and Reuss models can be used [32]. They provide upper and
lower bounds, respectively, for the macroscopic behaviour.
In the Reuss hypothesis, stress is uniform throughout the
RVE which can be written as: S ¼ s0ðxÞ ¼ s1ðxÞ. In the
Voigt hypothesis, strain is uniform throughout the RVE which
can be written as:

E¼ 30ðxÞ ¼ 31ðxÞ: ð3Þ
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3.2. Linear elasticity

In linear elasticity, average stress tensor in the phases and
the macroscopic strain is related to the macroscopic stress
tensor by the stress concentration tensor Ak and the effective
elastic tensor C h, respectively, which are defined by the two
following relations:

sk ¼ Ak : S ð4Þ

E¼ C�1
h : S ð5Þ

To fulfil the stress average conditions (Eq. (1)), tensors Ak

have to carry out the condition:
P

k f kAk ¼ I where I is the
fourth-order identity tensor. Tensors Ak depend on the model
chosen. They have been presented in detail by Nemat-Nasser
and Hori [32] and by Mura [33]. For a material made with
two phases, the fourth-order homogenized modulus tensor C h

can be calculated as:

C�1
h ¼ f0C�1

0 A0þ f1C�1
1 A1 ð6Þ

The self-consistent approach is an efficient tool to derive
the global mechanical behaviour of aggregates from the me-
chanical behaviour of each phase. Some analytical models
have been proposed for cases of linear isotropic elasticity [34].
The Classical Self-Consistent (CSC) method consists in suc-
cessively setting phases in the HEM, while the Generalized
Self-Consistent (GSC) method consists in simultaneously
setting all phases in the RVE [34]. In the latter, different mor-
phologies can be considered. With two phases, fillers (rubber)
can be introduced in the matrix (GSC e RUBinPP) or the PP
phase can be introduced in the rubber phase (GSC e PPin-
RUB). This second morphology can be considered if a very
high rubber volume fraction above the maximum packing
fraction is used, thus leading to a morphology formed by
‘‘agglomerated rubber particles with PP-filled interstices’’. The
first step is to determine the best morphology with the Young’s
modulus calculation. Voigt and Reuss models, the Classical
Self-Consistent (CSC) model, and the two Generalized Self-
Consistent (GSC) models have been used to estimate the
TPE modulus for rubber volume fractions between 0 and 1.
For this calculation, knowledge of the Young’s modulus and bulk
modulus for both phases is required. The Young’s modulus of
the PP was obtained from the tensile tests. Poisson’s ratio was
taken from the literature with an estimated value of 0.4 [35].
Fig. 3 shows the calculated moduli versus rubber volume
fraction according to the different models. The experimentally
obtained moduli of PP, the TPE45 and the TPE65 (841�
41 MPa, 336� 54 MPa and 168� 18 MPa, respectively) are
shown for comparison. These Young’s moduli have been deter-
mined from tensile tests realised at a strain rate of 10�4 s�1.
Since it was not possible to measure the modulus of the elas-
tomer due to the nature as a powder the elastomer modulus
must be chosen to fit the best experimental modulus. The
best fit was obtained for the GSC e RUBinPP model and for
an elastomer modulus consistent with the literature. Table 1
summarizes the Young’s modulus and bulk modulus for the
elastomer and for the PP. These results justify the choice of
the morphological pattern made of dispersed fillers inside a
continuous matrix (Fig. 4).

3.3. Non-linear behaviour

To extend the micro-mechanical model to higher strains, it
is necessary to consider both the non-linear behaviour of the
phases and a specific scale transition rule which takes into ac-
count the non-linear accommodation of stress heterogeneities
between the phases. The large transformation framework and
the non-linear behaviour of each phase are presented first
and then the micro-mechanical model is detailed.

3.3.1. Large transformation framework
The use of local objective frames is now well established as

an efficient method to develop constitutive models at finite
strains, which automatically fulfil the material frame indiffer-
ence requirement [36]. In this work, the corotational frame is
defined at macroscopic level and is associated to the skew-
symmetric part U of the velocity gradient L. Let Qc be the
rotation between the current space frame and the corotational
frame, _QcQt

c ¼ U. An additive decomposition of the strain
rate tensor in the corotational frame can then be defined by:

_E¼Qt
cDQc ¼ _E

eþ _E
in ð7Þ

with the strain rate tensor D¼LþU. _E
e

and _E
in

represent the
elastic and the inelastic strain rates, respectively. Constitutive
laws are written in the corotational frame, using the co-rotated
Cauchy stress tensor defined by:

S¼ ðdet FÞQt
cSQc ð8Þ
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Table 1

Young’s modulus and bulk modulus for the elastomer and for the PP

Coefficient E0 (MPa) K0 (MPa) E1 (MPa) K1 (MPa)

Value 840 1400 3.0 1250
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with F the transformation gradient tensor and S the Cauchy
stress tensor. The associated derivative is then the Jaumann
derivative. Each phase is assumed to rotate the same way as
the HEM. Therefore, microscopic stress and strain tensors
are defined and calculated in the same corotational frame.

3.3.2. Phase behaviours
As previously mentioned, the thermoplastic matrix, itself,

has a complex behaviour. For the present work, the micro-
mechanical behaviour of the thermoplastic matrix was put aside
and a phenomenological model has been used instead. Bruselle-
Dupend et al. [13] proposed a phenomenological model to de-
scribe the mechanical behaviour of a polypropylene. The model
developed here is an elastoviscoplastic analog system estab-
lished from Bruselle-Dupend’s model [13] and formed with
a viscoelastic block acting in series with a viscoplastic block
(Fig. 5). The strain 30 in the PP is, therefore, expressed as the
sum of a viscoelastic part (3ve

0 ) and a viscoplastic part (3
vp
0 ):

30 ¼ 3ve
0 þ 3

vp
0 ð9Þ

First, the viscoplastic contribution was developed within the
framework of associated plasticity for a generalized standard
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Fig. 4. Sketch of the chosen morphological pattern for generalized self-
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material as defined by Lemaitre and Chaboche [37]. We first
have to introduce a function F which depends on the stress ten-
sor s0 and a non-linear kinematic variable X such as [31]:

Fðs0;XÞ ¼ J2ðs0�XÞ � syþ
1

4sy

J2
2ðXÞ ð10Þ

where sy represents the initial yield stress and J2 represents the
von Mises equivalent of a tensor. The last term has been added
to model the elastic domain decrease. This term has been pro-
posed by Ladeveze and Rougee [38]. 3

vp
0 follows a normality

flow rule (Eq. (11)) derived from a viscoplastic potential
U(F ), such that U0(F ) is given by Eq. (12) [31].

_3vp
0 ¼

vU

vs0

¼ vU

vF

vF

vs0

ð11Þ

U0ðFÞ ¼ vU

vF
¼ _30sinh

�
F

N

�
ð12Þ

Finally, the evolution of 3
vp
0 can be expressed as:

_3vp
0 ¼ 0 if F� 0

_3vp
0 ¼

vU

vs0

¼ 3

2

s0 �X

J2ðs0�XÞU
0ðFÞ if F> 0

8>><
>>:

ð13Þ

Hardening is purely kinematic but the size of the yield
stress surface will vary according to the last term of the
right-hand side term of Eq. (10). The evolution law of a is
derived from:

� _a¼ vU

vX
where X¼ 2

3
Ca ð14Þ

which can be summarized as:

_a¼ _3vp
0 �

C

2sy

U0ðFÞa ð15Þ

Let us now consider the viscoelastic block. It is split into
two parallel parts (Fig. 5). The first one (index a) is elastic and
characterized by its fourth-order elastic tensor C a. The second
one (index b) is viscoelastic and characterized by its fourth-
order elastic tensor C b. The elastic properties are assumed to
be isotropic and characterized by the Young’s moduli Ea and
Eb, and the compressibility moduli Ka and Kb. In order to sim-
plify the equations, it is assumed that their Poisson’s ratios are
equal. This assumption leads to a simplification of the consti-
tutive equations. Let us now define the total elastic tensor such
that: C 0 ¼ C a þ C b. The stress tensor is related to the strain
tensor by s0 ¼ C 0 : ð30 � 3in

0 Þ where 3in
0 ¼ C�1

0 C b : 3b þ 3
vp
0 .

In this work, 3
vp
0 represents the strain of the viscoplastic block

and 3in
0 represents the total inelastic strain of the PP. 3b is the

viscoelastic strain part of the viscous element. The evolution
law of 3b is given by:

_3b ¼
�

J2ðsbÞ
hb

�n
sb

J2ðsbÞ
ð16Þ
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with sb ¼ C�1
0 C b : ðs0 � C a : 3bÞ. sb the deviatoric part of

sb. hb and n are two material parameters.
Assuming that the bulk modulus of the PP is known, this

model has eight parameters to be determined from tensile
tests. Table 2 summarizes the values obtained, whereas Figs.
6 and 7 give Cauchy stress versus logarithmic axial strain and
time, respectively, in a loading test at a strain rate of 5�
10�4 s�1 followed by a relaxation step, which demonstrates
that this model leads to correct representation of the mechan-
ical behaviour during load and relaxation steps.

The behaviour of the rubber powder is assumed to be purely
linear elastic and isotropic, and defined by a Young’s modulus
and a bulk modulus. This assumption seems to be correct for
a limited strain range. The elastomer is assumed to be incom-
pressible (Table 1). The Young’s modulus of the particles will
be determined in a second step by inverse identification
method over the composite because particles are too small
to be characterized directly.

3.3.3. The b model
In order to illustrate the extension of self-consistent models

to large-strain framework and non-linear constitutive behav-
iour, the Voigt model is considered in the first step. Inelastic
behaviour of the phases can be written as:

sk ¼ C k : ð3k � 3in
k Þ ð17Þ

where C k is the fourth-order elastic tensor and 3in
k is the inelas-

tic strain tensor for phase k. In the case of the Voigt model, the
strain tensor is uniform throughout the phases and equal to the
macroscopic strain tensor (Eq. (3)). The macroscopic stress
tensor can also be written as:

S¼ C h :
�
E�Ein

�
ð18Þ

with C h ¼
P

k

f kC k and

Ein ¼ V C�1
h :

�X
k

f kC k : 3in
k

�
ð19Þ

where V C h is the homogenized modulus tensor in the particu-
lar case of the Voigt hypothesis. Therefore, from Eq. (17), the
Voigt model can be expressed for non-linear behaviour as:

sk ¼ V A k :
�
Sþ V C h :

�
Ein � 3in

k

��
ð20Þ

where V Ak is the strain concentration tensor of phase k in the
particular case of the Voigt hypothesis.

Among self-consistent models, one has been chosen which
has been already successfully used for metallic alloys [36,39e
41]. In this model which can be seen as an extension of
Eq. (20), the local inelastic strain 3in
k is replaced by a phenom-

enological variable bk and the local stress tensor is written as:

sk ¼ A k : ½SþDk : ðB�bkÞ� ð21Þ

bk presents a non-linear evolution with respect to plastic
strain. They are called inter-phase accommodation variables.
B and bk are defined with respect to the corotational frame
and are, thus, respect the material frame indifference. The
initial values of these tensors are equal to zero and their time
evolutions can be written as:

_bk ¼ _3in
k �Dkbk

��� _3in
k

��� ð22Þ

The time evolutions depend on the inelastic strain rate ten-
sor and for this reason in the present study, as the elastomeric
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Table 2

Coefficients for the PP

Coefficient Ea (MPa) Eb (MPa) ha (MPa s)1/n N C (MPa) N sy (MPa) _30 (s�1)

Value 423 362 10.9 8.19 240 1.45 6.22 0.326� 10�6
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phase is considered to be completely elastic, b1 remains equal
to zero. D0 is a tuning parameter which will be identified later.
Replacing total strain by B assumes that the main source of
heterogeneities is plasticity more than elasticity. This new var-
iable was shown to correctly capture the plastic accommoda-
tion which comes from the self-consistent formalism [41,42].
The tensor B has to respect the stress average condition in the
volume. Using Eqs. (1) and (21) it can be expressed as:

B¼ ð f0A0D0þ f1A1D1Þ�1ð f0A0D0 : b0þ f1A1D1 : b1Þ; ð23Þ

We consider that the phases exhibit isotropic behaviour and
in this case the tensor Dk can be written as:

Dk ¼ ðakK þ bkJ ÞC h ð24Þ

with K ¼ I� I and J ¼ I � K . I represents the second-order
unity tensor. Furthermore, the Voigt and Reuss models are two
particular cases of this model which tends to the Voigt model
for Ak ¼ C k

V C�1
h and Dh ¼ V C hðak ¼ 1; bk ¼ 1Þ, and to the

Reuss model for Ak ¼ I and Dk ¼ 0ðak ¼ 0; bk ¼ 0Þ. To com-
plete the model, the macroscopic inelastic strain, Ein has to be
defined. From Eqs. (2), (17) and (18), Ein can be written as:

Ein ¼ f03in
0 þ f13in

1 þ f0C�1
0 A0D0 : ðB�b0Þ þ f1C�1

1 A1D1

: ðB�b1Þ (25)

Eqs. (23) and (25) have been presented in a general form. They
could be simplified in this study considering that the rubber
exhibits elastic behaviour. In this case 3in

1 ¼ 0 and b1¼ 0.
Then, the macroscopic stress can be calculated using Eq.
(18). The model used in this work is described by the set of
Eqs. (16)e(25) with three tuning coefficients b0, b1 and D0.

3.4. Finite Element Method (FEM) simulation and
Self-Consistency Conditions (SCC)

The model is able to calculate stress and strain tensors in
the two phases, as well as for the homogenized material, how-
ever, no analytical solution exists for the inclusion problem
when the behaviour is non-linear. The model has been as-
sessed by means of a Finite Element Method (FEM) calcula-
tion, and its overall behaviour of the model is compared to
the FEM model using volume averages of stress and strain.
The ABAQUS software was used, in the same way as Mercier
et al. [19] used it to model the behaviour of the pattern. In
order to reduce calculation time, FEM analysis has been per-
formed with the 2D axisymmetric assumption. Only an eighth
of the geometry has been represented (Fig. 4). Inner, interme-
diate, and outer areas represent the rubber, the polypropylene,
and the HEM, respectively. They were modelled with 21, 12,
and 42 elements, respectively. 8-Node bilinear elements with
reduced integration were used. The volume of rubber and PP
is equal and this mesh models a TPE with 50% volume frac-
tion of rubber (TPE50). The model has been implemented in
a user subroutine UMAT in ABAQUS. Rubber, PP, and the
HEM behaviours are described by the model for 100%,
0%, and 50% of rubber volume fractions, respectively. The
lower surface is a plane of symmetry and the solicitation has
been applied to the upper surface. Boundary conditions are
represented in Fig. 8. The traction vector is continuous at
the interface; perfect bonding is assumed. The stress average
in each phase has been computed and compared to the stress
calculated with the model [19,41]. The self-consistency condi-
tions can be expressed with the following proposition:

cg˛W ; ct; hsFEM
k i �smodel

k ¼ 0; h3FEM
k i � 3model

k ¼ 0; ck

ð26Þ

where w is the set of numerical experiments. hsFEM
k i and

h3FEM
k i represent the average stress tensor and the average

strain tensor, respectively, in phase k calculated by the Finite
Element Method calculation within the volume of phase k.
smodel

k and 3model
k represent the stress and strain tensors, respec-

tively, calculated with the model.

4. Results

4.1. Parameter identification

The set of parameters, denoted A, of the model are identi-
fied by a quantitative comparison of the experimental observa-
tions Zexp and the modelled simulations of these experiments
Zmodel. This identification task is classically expressed by an
optimization problem based on the cost function defined by:

LðAÞ ¼
X
j˛V

Z
t˛Ij

		Zexp
�
t
�
�Zmodel

�
A; t
�		dt ð27Þ

where the symbol j � j represents a dimensionless norm on
the space of the observable variables (strain, displacement,

Fig. 8. Mesh of the pattern and the boundary conditions.
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load,.) and Ij the observation interval in the jth test of the ex-
perimental base V . For the proposed model, the parameters A
have to be determined from tensile test results and the self-
consistent conditions of the homogenization process. The
identification method has therefore been modified to take these
conditions into account. A penalty term has been introduced in
the cost function in order to limit the optimization process to
these conditions. The self-consistency of the model is esti-
mated by the comparison of the results of the boundary value
calculated by the Finite Element Method simulation and those
predicted by the model with the same loading paths. There-
fore, the optimization problem can be expressed as the
minimization of the following cost function:

LpðAÞ ¼ LðAÞ þ
X
j˛W

X
k¼1;2

Z
t˛Ig

n
jhsFEM

k i �smodel
k j

þ jh3FEM
k i � 3model

k j
o

dt ð28Þ

Localization law coefficients have been determined to min-
imize the differences between experimental results and direct
simulation [43] on one hand, and between experimental results
and FEM simulation on the other. In this study, only tensile
tests have been realised and, therefore, the results are quasi-in-
sensitive to hydrostatic pressure. In this case, ai which controls
the hydrostatic part of Dk has no effect on the model results
and it cannot be determined in this work. They have been
set equal to 1. The minimization of Eq. (28) has been done
with the software SiDoLo [44]. This identification has given
the parameter values summarized in Table 3.

4.2. Results

Figs. 9 and 10 show the comparison of experimental and
calculated Cauchy stress versus logarithmic axial strain and
time, respectively, for the two TPEs for a load at a constant
strain rate of 0.001 s�1 followed by relaxation. The loading
step has been correctly predicted, as well as the relaxation step
which is exact when predicted by the model as for the PP. It
can be concluded that the viscosity component of the rubber
does not have a large effect on material behaviour for the
range of strain rate studied. Stress tensor components in
the rubber and in the PP have been compared using both the
model and the FEM simulation. Fig. 11 shows Cauchy stress
for a 50% volume fraction elastomer (TPE50) for a load at a
constant strain rate of 0.001 s�1, and Fig. 12 shows equivalent
strain in the matrix (PP) and in the rubber (RUB) for the same
previous test. Comparisons of model behaviour to FEM simu-
lation have been conducted for different volume fractions of

Table 3

GSC e RUBinPP model parameter values

Coefficient a0 a1 b0 b1 D0

Value 1.0 1.0 0.4086 2.1432 0.0855
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Fig. 9. Comparison of experimental and simulated Cauchy stress versus

logarithmic axial strain for the two TPEs.

time (s)

0 200 400 600 800 1000 1200 1400 1600

C
au

ch
y 

st
re

ss
 (

M
Pa

)

0

5

10

15

20

25

30

PP
TPE45
TPE65

model exp.

Fig. 10. Comparison of experimental and simulated Cauchy stress versus time

for the two TPEs.
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Fig. 11. Simulated Cauchy stress versus time for the TPE50 and in the two

phases for a test of monotonic loading at _E
zz ¼ 10�3 s�1.
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elastomer. Fig. 13 gives calculated axial stress in the PP ob-
tained by the model and by the FEM simulation for different
volume fractions. For the second one, three different meshes
have been realised with three different volume fractions (Fig. 8)
and the results were obtained by averaging the PP axial stress
in the volume of the matrix phase. The SCC is then validated
for different volume fractions. One of the advantages of
micro-mechanical modelling is their ability to estimate the
stress and the strain average in each phase. To illustrate
this point stress versus strain has been drawn in Fig. 14 for
the HEM and for each phase in a tensile test at a constant
strain rate of 0.001 s�1. At a given macroscopic strain, the
strain of the PP is lower and higher in the rubber. We can
observe that for a same macroscopic strain, each phase has
different response depending on the rubber volume fraction.
It can be concluded that this micro-mechanical model gives
interesting results for the two volume fractions considered.
Further works will deal with the predictive capacities of
such a model.
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Fig. 12. Simulated logarithmic axial strain versus time for the TPE50 and in

the two phases for a test of monotonic loading at _E
zz ¼ 10�3 s�1.
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Fig. 13. Comparison of calculated axial stress in the PP obtained by the model

and by the FEM simulation for different volume fractions at _E
zz ¼ 10�3 s�1.
5. Conclusion

The aim of this work was to study the ability of a micro-
mechanical model to represent mechanical behaviour of TPE
materials; therefore the mechanical behaviour of a TPE made
with a polypropylene matrix and filled with rubber particles
has been studied. The thermoplastic behaviour was modelled
with a viscoelastic model and the rubber with a purely linear
elastic model. The overall behaviour and local mechanical
fields were estimated through a generalized self-consistent
scheme. In this scheme a pattern with particles of elastomer
included in the thermoplastic matrix was chosen for its ability
to properly predict the TPE’s Young’s modulus versus particle
volume fraction. A non-linear model was proposed and suc-
cessfully compared to experimental tests on two TPE with two
different rubber particle volume fractions. A particular transi-
tion rule was introduced in the model and tested. This model
was implemented into a FEM simulation to calculate stress and
strain in the pattern at macroscopic level and in the phases. An
inverse method was used for finding model parameters. These
parameters were chosen such as the model predictions are com-
parable to experimental results and such as stress and strain in
the phase calculated with the model are similar to those com-
puted with the FEM simulation in average in the phases.

Acknowledgements

This work was partly supported by PAI Procope program
from the French government. Special thanks to Erwan
Bertevas and Ludovic Ruaudel, former students at Laboratoire
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